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Abstract

A novel theoretical treatment is presented for simulating the shape of the wavy surface of thin liquid
falling films, flowing freely inside a vertical pipe. The simulation proved particularly successful for the range
~ 800 < Re< ~ 5000. This is a regime where each one of the film main elements—roll waves, ripples,
capillary waves and substrate—can be effectively used to adjust a different statistical characteristic of the
film. The geometrical profile of all types of waves is simulated fairly well by a log-normal function with its
parameters related to specific wave features. The Gaussian fashion of selecting the wave parameters from
specific ranges of values and the subsequent random deposition of the produced waves over the film
substrate attests the stochastic nature of falling films. The performance of the code routine is satisfactory
producing considerably good reconstructions of the film surface shape for all the data sets used to assess its
accuracy. The potential for appraising several obscure features of falling films by matching the experi-
mental and theoretical results is discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Free falling films constitute an interesting field for both theoretical and experimental investi-
gations with produced results of widespread utilization. They are usually encountered in common
process equipment where heat and mass transfer take place (e.g. Collier, 1972). Regarding the
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food industry, special attention has been directed towards the design and operation of direct
contact falling film evaporators and condensers (e.g. Karapantsios et al., 1995). A significant
amount of research work carried out over the last few decades, proves that the performance of
such equipment is greatly influenced by the film characteristics and especially its surface waviness
(e.g. Brauner and Maron, 1982; Webb, 1994). The enhancement of heat and mass transfer due to
surface waves justifies the never lasting interest towards modeling of wavy falling films.

Numerous theoretical attempts have been made to study the waves formed on free falling liquid
films. This wealth of research work can be somewhat arbitrarily divided in two general groups
with respect to Reynolds number. The first group refers to wave evolution over laminar films
flowing at low Reynolds numbers and it involves a number of different approaches. A consid-
erable theoretical understanding was gained by the dynamic singularity analysis performed by
Chang and co-workers (e.g. Chang et al., 1993; Chang, 1994; Chang and Demekhin, 2002), which
derived close-form multiple solutions for the nonlinear evolution of finite amplitude waves
bifurcating from primary perturbations on the smooth film. A few studies used finite element
solutions of the full Navier-Stokes equations (e.g. Bach and Villadsen, 1984; Kheshgi and Scriven,
1987; Salamon et al., 1994) assuming waves with a finite amplitude or a stationary profile. Other
efforts were based on simplified solutions of the Navier—Stokes equations under various
approximations (e.g. permanent or periodic waves) or order-of-magnitude assumptions (e.g.
Benney, 1966; Alekseenko et al., 1985; Nguyen and Balakotaiah, 2000). On the whole, the
aforementioned analyses were found to produce waveforms that are only in fair agreement with
experimental observations and only for small Re numbers—usually below 300—which are much
lower than those usually encountered in many practical applications.

The second group of theoretical studies deals with films at higher Re numbers, where fast-
moving large waves tend to overtake the small (capillary) waves resulting in a complicated wave
structure. Numerical simulations of laminar wavy films at relatively high Reynolds numbers were
conducted by a few investigators e.g. Wasden and Dukler (1989), Yu et al. (1995) and Stuhltrager
et al. (1995), to predict the spatial variations in film thickness along with the velocity field inside
solitary or interacting waves. Using a prescribed geometrical shape for large waves, Maron et al.
(1985), Brauner (1987) and Maron et al. (1989) proposed a model which could yield some useful
information regarding the velocity distribution within large waves, including also the effect of
turbulence. Yet, the model was rather complex with different physical mechanisms controlling
various zones along a large wave. Moreover, the employed shape of large waves—assumed to
have a linear slope at both the front and the back of the waves—was oversimplified compared to
that measured.

There is enough theoretical and experimental evidence that a falling film flow is transient and
nonlinearly unstable and has a random character, especially at high Reynolds numbers where
vortex motions prevail. Within the framework of deterministic chaos, some studies calculated the
fractal dimensions of the reconstructed phase space from experimental film thickness measure-
ments and verified that the nature of a falling film is indeed chaotic (e.g. Lacy et al., 1991; Drahos
et al., 1997; Zhang et al., 2000). Accounting for such randomness, Back and McCready (1988)
computed the local velocity gradients at the film surface (from reconstructions of the surface
shape) by taking the inverse Fourier transform of the experimental wave amplitude spectra. In
line with the above, Karapantsios and Karabelas (1990) determined a characteristic spatial evo-
lution portrait of large waves independent of Reynolds number and used the computed Eulerian
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surface accelerations to investigate the development of waves. Wave slopes in the range 14-20° for
the wave front and —7° to —11.5° for the wave back were calculated, showing almost no depen-
dence on Reynolds number.

Despite the significant amount of research work—both theoretical and experimental-—carried
out on free falling film characteristics, it is felt that additional effort is required to describe the
wave surface geometrical details. This is more so if one considers that three-dimensional wave
structures may flow even over laminar falling films (e.g. Adomeit and Renz, 2000). Recent works
(e.g. Karimi and Kawaji, 1998; Takamasa and Kobayashi, 2000; Vlachogiannis and Bontozoglou,
2001; Mouza et al., 2002; Ambrosini et al., 2002) clearly indicate an evergreen interest for this
research topic, where also the use of very sophisticated measuring techniques is highlighted.

This work is concerned with the reliable description of the surface morphology of wavy free
falling films. The detailed experimental data obtained by Karapantsios et al. (1989) for thin falling
films of water inside a 50 mm i.d. vertical pipe are employed to assess the proposed modeling
procedure. In that work, parallel-wire electrical conductance probes were used for measuring
instantaneous film thickness 2.5 m downstream from the water inlet. Data were collected over an
8 s period with a 500 Hz sampling frequency. A rather broad range of Re numbers was originally
covered i.e. 509 < Re < 13,090 but in the present study only data with Reynolds number below
7842 are tested. It should be stressed that the parallel-wire conductance probe method is con-
sidered a quite sensitive and accurate measuring technique in which the present authors have a
considerable experience since they successfully employed it for measuring film thickness not only
in free falling films (e.g. Karapantsios et al., 1989; Karapantsios and Karabelas, 1995a,b) but also
in two-phase flow experiments (e.g. Vlachos et al., 1997). Although one-point film thickness
measurements can not provide information about any 3D wave structures over a falling film, it is
believed that principles and approximations advanced here regarding 2D waves may be extended
to 3D waves as well.

In the following, the computational procedure is outlined first, and the method validation
together with the main results are presented and discussed next.

2. Computational procedure
2.1. Preliminary analysis

2.1.1. Identification of large waves

It is commonly accepted that a falling liquid film is comprised mainly of (e.g. Chu and Dukler,
1975): (a) the substrate, a region of small thickness which at the one side is in contact with the
solid wall while at the other side serves as the base to sustain the surface waves, (b) the large waves
(also known as roll waves), which are waves with amplitude higher than the mean film thickness
and which carry a significant portion of the total liquid flow, and (c) the ripples, which are waves
with amplitude lower than the mean film thickness, covering the substrate between the large
waves. The front of the large waves emerges from the substrate and has a steep slope while their
back has a smaller slope and extends down to the substrate. Karapantsios et al. (1989) reported
spectral density functions of film thickness for all the employed Reynolds numbers and found that
they all displayed a very pronounced total maximum in the frequency range of 5-8 Hz which was
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attributed to large waves. Modal frequencies of the same order were communicated also by other
researchers (e.g. Chu and Dukler, 1975; Takahama and Kato, 1980; Zabaras, 1985). The major
part of this study deals with experiments at Re > 1000 (i.e. for turbulent flow), where large
amplitude waves cover the major part of the film surface (Karapantsios and Karabelas, 1990).
Therefore, the first step of the present simulation is to identify and isolate these large waves.

The procedure of tracing the large waves in an experimental record, (thickness vs. time), ini-
tiates every time from the largest wave and continues in a descending order to the immediately
smaller waves. The procedure ends when the total number of the recognized large waves repre-
sents a frequency of 5-8 Hz in the total duration of the sample (i.e. for a 8 s sample this means 40—
64 waves). The identified waves can be either individual waves or part of formations of two or
even three waves overlapping each other (Fig. la and b). In fact, this initial selection of large
waves is made closer to 7-8 Hz because a small number of them will be rejected below as extreme
outliers since their morphology is far too irregular.

2.1.2. Mathematical representation of large waves
The next step is to find an analytical expression that accurately depicts the geometrical profile
of large waves. Simple polynomial functions are not acceptable since no distinct physical signif-
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Fig. 1. (a) Individual large wave and (b) double wave, isolated from a measured film thickness record.
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icance can be attached to their arithmetic coefficients regarding their role in shaping the theo-
retical curve. On the basis that most part of the flowing liquid is carried by large waves, the shape
of the cumulative probability density function of the entire film thickness records can be attrib-
uted mainly to large waves. In this sense, it is reasonable to consider that the mathematical
expressions describing the cumulative probability density functions of the whole sample can also
describe satisfactorily the geometry of large waves. Karapantsios et al. (1989) reported that the
cumulative probability density function of film thickness records in the range 509 < Re <9000 is
best represented by a Weibull distribution, while a log-normal distribution is preferred at
9000 < Re < 13,090. Takahama and Kato (1980) used a gamma distribution at Re < 2400, a log-
normal at 2400 < Re <4000 and again a gamma distribution at 4000 < Re < 8000. Telles and
Dukler (1970) reported a satisfactory fit of their data with a gamma distribution in the range
1150 < Re < 5750. The mathematical expressions for the Weibull, log-normal and gamma distri-
butions can be found in any elementary statistical textbook, e.g. Derman et al. (1973).

Fig. 2 demonstrates that the above distributions are indeed quite successful in describing the
profile of a typical large wave and that their predictions are in close proximity to each other.
Among them, however, the log-normal distribution is more favorable to be employed in the
present simulations since a quite distinct relationship was found to hold between its (four)
parameters with specific physical characteristics of the examined waves, (see below). The log-
normal distribution in its most generic form is given as follows (Derman et al., 1973):

In\?
y:a+b*exp<—2—d°> (1)

In this case, y stands for film thickness and x for time.

2.1.3. Parametric analysis of the log-normal distribution

Each parameter of the log-normal distribution (i.e. a, b, ¢ and d) is found to be related to a
certain physical feature of the geometry of the waves. More specifically, the parameter a corre-
sponds to the minimum film thickness, /4,;,, which is the thickness of the continuous substrate
below the waves and in contact with the pipe inner walls. According to the data of Karapantsios
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Fig. 2. Comparison of theoretical distribution curves with an experimental thickness trace of a large wave.



374 L.G. Touglidis et al. | International Journal of Multiphase Flow 30 (2004) 369-393

et al. (1989) for Re <~ 5000, a is always around 0.25 mm. The parameter b dictates the amplitude
of the theoretical log-normal curve. Fig. 3a presents the effect of b in the shape of the log-normal
curve. A realistic range of b-values for the large waves isolated above, is I < b < 4. It is noted that
the parameters a and b have both length dimensions, with the maximum (peak) value of the wave
thickness given by A, =a+b.

Parameter ¢ defines the relative position within each wave where the curve’s maximum is lo-
cated. In this work, this parameter takes values in the range 0.011 < ¢ < 0.022 and has time
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Fig. 3. Effect of (a) parameter b, (b) parameter ¢ and (c) parameter d, on the shape of the log-normal curve.
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dimensions since x in Eq. (1) denotes time. On the other hand, the dimensionless parameter d
represents the wavelength (in fact, the time-length of the wave) and varies between 0.4 < d < 0.6.
Fig. 3b and ¢ shows the effect of ¢ and d, respectively. It must be mentioned here that the notion of
a “wavelength” is not exact when working with the log-normal curve. This is so because the log-
normal curve tends asymptotically at large times to the horizontal line y = a (which expresses the
substrate) and therefore the wavelength is, rigorously speaking, infinite. So, the term wavelength is
used here only conventionally and reflects the time the curve takes to approach the horizontal
asymptote y = a to 1% the value of a.

2.1.4. Dependence of the log-normal parameters on the Reynolds number

Fitting the log-normal function to every single one of the isolated large waves yields useful
information regarding the variation of the log-normal parameters with Reynolds number and the
possible interaction among them. The fitting of an individual large wave by the log-normal
function is considered successful only when the correlation coefficient R? is above 0.9. The use of
such a criterion is imperative because of the stochastic nature of film thickness, which sometimes
leads to exceptionally irregular wave formations. It is worth mentioning, though, that R? was
rarely below 0.93-0.95 for the identified waves of this work and rejection of waves based on this
procedure is at most 5% of the initial selection. This leaves us with large waves still above 5 Hz.

Simple statistical analysis (ANOVA) reveals that for all the Re numbers examined here the
interaction among the parameters a, b, ¢ and d is not significant at a 95% level. Parameter a
corresponds (as already mentioned) to the substrate height, Ay, for which, after performing a
linear regression analysis on the experimental data of Karapantsios et al. (1989), one obtains:

ap o [025 for Re< 5500 o
— Mmin =1 0.0004Re + 0.0275  for Re > 5500

Fig. 4 presents the variation of the maxima and minima of the parameters b, ¢ and d with respect
to Reynolds number. For reasons that will be explained later the values bs,, and besy, are used
instead of the absolute values by, and by.c. Apparently, there is a clear linear dependence of
parameter b on Re number while the parameters ¢ and d are rather insensitive to Re. These
observations are in accordance with Karapantsios et al. (1989) experimental findings, who re-
ported that &, increases linearly with Re whereas wave frequencies (o 1/d) are independent from
Re. The average best-fit d value, (0.50, computed from all Re numbers) corresponds to 23 data
points in the film signal, which is the number of data points spanning the average large wave of
this study. These 23 points represent an average large wave time-length of 0.046 s (=23 data
points * (500 data points/s)~!). This value is a bit higher than 0.03 s which was proposed by
Karapantsios et al. (1989) for the identification of large waves but much lower—as expected—
than the values indicated by Fourier analysis (5-8 Hz — 0.2-0.125 s) which refer to the case of
large waves covering completely the film surface with no space separating them.

It must be added here that the employed large wave-selection procedure (based on the one-by-
one identification of progressively smaller waves until the 5-8 Hz frequency criterion is met)
identifies large wave peaks always well above the mean film thickness, Aye.,. In particular, it is
found that the lowest wave peak height lies in the range:

a+ bsy, = (1.4-2.2) * hpean (3a)
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Fig. 4. Dependence of (a) parameter b, (b) parameter ¢ and (¢) parameter d on Reynolds number.

with no clear dependence on Reynolds number. In other words, the present analysis has selected
no large wave peak in the spatial domain [Apean, (1.4-2.2) * Apean] and the consequence of this will
be discussed later. The situation improves only a little if one uses by, instead of bs,:

a+ byin = (1.2-2.0) * Apean (3b)
Table 1 summarizes the range of values of all the log-normal parameters estimated in the present
analysis.

2.2. Algorithm development

It must be stressed already at this point that the success of the present algorithm in describing
film thickness data constitutes a “‘sufficient” but not “necessary’ term, regarding the undertaken
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Table 1
Range of values of the log-normal parameters for the data of Karapantsios et al. (1989)
Parameter Maximum Minimum
a 0.25 for Re < 5500
0.0004Re + 0.0275 for Re > 5500
b bgs% = 0.0003Re + 1.767 bs% = 0.0002Re + 0.543
Cimax 0.022 0.019
Crmin 0.014 0.011
inax 0.600 0.540
diin 0.410 0.370

assumptions and conventions. That is, there may be also other combinations of physical char-
acteristics that can lead to equally well or even better simulation of the experimental data. The
present algorithm claims only to be an adequate and reasonable on physical grounds choice
for the description of the film surface geometry. Furthermore, the stepwise procedure of building-
up the film morphology allowed us to attach specific significance to certain hydrodynamic fea-
tures of the film and appreciate their interrelationships in the resulting film morphology.

The whole procedure aims at the successful step-by-step reconstruction of the main elements of
the film thickness trace. In an ascending-height order, these are the substrate, the small amplitude
waves or ripples and the large or roll waves. Computer implementation constraints dictated this
order to be more or less the order of reconstruction. To start the procedure, the algorithm requires
as inputs the Re number, the total duration of the simulation and the time interval, Az, by which
the time domain is discretized (time interval between successive data points). The values of the last
two inputs are fixed for all the runs tested here, 8 and 0.002 s respectively, which are those em-
ployed by Karapantsios et al. (1989). To illustrate the computational procedure, a case for
Re = 2325 is presented in detail below, where only 1 s of the simulated film trace is displayed for
clarity.

2.2.1. Substrate reconstruction

This is a simple step consisting of the generation of a matrix with all its elements equal to the
substrate height, a = A, (Fig. 5a). All subsequent types of waves will be deposited over this
substrate, therefore, for all waves a = h,.

2.2.2. Ripples reconstruction

Ripples are waves which have all their parts below the mean film thickness, /pean, SO they are
distinctly smaller than roll waves. Yet, they appear to have an asymmetric profile similar to that of
roll waves. So, the log-normal function may be employed for ripples reconstruction as well. Since
the conductance technique of Karapantsios et al. (1989) did not permit the accurate spatial
depiction of such small waves (the same holds also for Chu and Dukler, 1974), any information
regarding ripples must be viewed with reservation. In view of the above, it is decided to perform
the simulation of ripples assuming a geometric similarity with large waves. That is, parameters ¢
and d are taken to lie between the limiting values identified for the large waves (Table 1). As
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Fig. 5. (a) Simulation of the undisturbed substrate surface, (b) simulation of the substrate covered with ripples, (c)
simulation of the substrate covered with both ripples and capillary waves (d) simulation of film thickness trace with
capillary, ripples and large waves. All traces are for Re = 2325.

regards the value of b, this need not be rigorously predefined since the code has the ability to
automatically adjust its value to meet the statistical criteria set for the film.

The frequency and location of occurrence of ripples on the surface of the film is a serious matter
of concern. Karapantsios et al. (1989) argued about a frequency range between 10 and 20 Hz in
their data while Chu and Dukler (1974) reported values about twice as high but they all agree that
the range is rather independent from Reynolds number. However, the major difficulty in achieving
an effective computer implementation comes from the fact that the ripples are encountered—and
therefore must be deposited—in between large waves. This alternating wave deposition (i.e. large
wave—small wave(s)—large wave) made the code exceedingly cumbersome and slow and there-
fore another approach was eventually employed.

The simulation of ripples starts by defining the frequency of waves that will be deposited on the
substrate. This number is obtained from the empirical formula:

f=0011Re + 5 (4)

The above expression was derived after extensive trials of the algorithm and comparisons of
the simulated film thickness traces to experimental data. At first glance it looks improper that the
frequency in Eq. (4) depends on Reynolds number. However, this is purely to counterbalance the
increasing overlapping of ripples employed by the numerical scheme at higher Reynolds numbers.
The code deposits first the ripples and then the large waves on the surface of the substrate. As the
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Reynolds number increases, the deposited large waves have a much broader base (time-length)
and so they overlap at a higher extent the pre-deposited ripples on the substrate, leaving in the end
a comparable number of ripples for all Re numbers. The use of Eq. (4) is further supported by the
fact that not only the frequency of occurrence of the ripples but also all other calculated statistics
as well as the macroscopic appearance of the simulated film compare favorably well with the
original experimental information. It should be emphasized that the relative comparisons were
made not just for the ripples but for the entire reconstructed film including all kinds of waves.

The parameters ¢ and d for all ripples are chosen in a random (Gaussian) manner from the
domains [min Cpin, MAX Cpax] and [min dyin, max dyag), respectively. On the other hand, the
parameter b receives initially random values from the arbitrary range b = 0.02 to b =0.1.
The choice of this range has no practical significance because the initially selected b-values for the
ripples are adjusted later on by the code while performing correction tests. Next, each generated
ripple is deposited in a Gaussian fashion over the undisturbed substrate surface. If parts of
one ripple coincide with parts of another ripple that was previously deposited, then overlapping to
greater heights occurs, that is, the parts with greater height are kept while the lower ones are
rejected. At the end, overlapping yields a frequency smaller than the one estimated from Eq. (4)
plus that the physical appearance of the surface is now more realistic because of the random
occurrence of double, triple or even multiple ripples (Fig. 5b).

2.2.3. Capillary waves reconstruction

The substrate surface is not as smooth as one might have intuitively expected. Careful
inspection of the experimental signals reveals that the substrate is covered by excessively dense
disturbances of very low amplitude. Similar disturbances are also encountered at the surface of
ripples but not on large waves. These small disturbances are capillary waves and represent a
salient feature of a falling film’s surface. Capillary waves originate from occasional hydrodynamic
instabilities and/or the shearing action of the surrounding air and due to their small curvature,
interfacial tension (capillary) forces have a restoring influence on them (e.g. Chu and Dukler,
1974). So, their reconstruction beyond the apparent esthetic reasons has also a physical signifi-
cance.

The highly transient nature of capillary waves combined with the fact that the conductance
probe of Karapantsios et al. (1989) could not resolve features down to the size of capillary waves,
resulted in a rather chaotic appearance of capillary waves over the recorded film surface. In
addition, the main statistical characteristics of the liquid film is practically unaffected by these
small waves. For these reasons, it is decided to perform the reconstruction of capillary waves on a
purely empirical basis.

For simplicity, a geometrical resemblance between ripples and capillary waves is assumed which
means that the latter can be also represented by the log-normal function. However, this is not a
crucial assumption as will be shown below. The selection procedure of the log-normal parameters
b, ¢ and d is the same as for the ripples but now the initial b-values are no further adjusted by the
code. Regarding the frequency of deposition of capillary waves this has been empirically deter-
mined as tenfold the value obtained from Eq. (4) for the ripples.

The deposition procedure starts once more with the evaluation of the total number of capillary
waves and their descriptive log-normal parameters, exactly as it was done with the ripples. Then,
these waves are added in a Gaussian manner over the substrate and the ripples. In case a capillary
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wave is deposited at a position where another wave already exists, then the higher parts of this
wave replace those parts of the other wave with smaller height. Due to the exceedingly high
number of deposited capillary waves, multiple overlapping occurs and as a result the finally
reconstructed capillary waves end up loosing their original log-normal features. The result is
illustrated in Fig. 5c. The above procedure is accepted on the basis that the macroscopic
appearance of the final reconstructed film matches visually the morphology of the experimental
signal. It must be kept in perspective that the frequency of ripples and capillary waves at this stage
of the computations is different than at the final film due to the subsequent deposition of large
waves.

2.2.4. Large waves reconstruction

With respect to large waves, the reconstruction procedure has much in common with the
generation of ripples. The log-normal parameters b, ¢ and d obtain their values randomly from the
respective ranges in Table 1. The parameter b ranges between bsy, and bosy, and not between by,
and byax. This is done so because it is noticed that if the selection is made from the latter rigorous
limit range then the whole simulation performs poorly, producing more wave peaks close to by,
and by, than actually observed in the experiments. Possibly, the Gaussian manner of selecting b
values for each large wave does not reflect exactly what happens in reality. The problem is sur-
mounted by narrowing the range of parameter b between the statistical limits bsy, and bosy,. The
above clearly indicates that the simulation is particularly sensitive to the selection of the proper b
values for the large waves, whereas it appears less dependent on the ¢ and d values.

The frequency of occurrence of large waves is between 5 and 8 Hz (a value chosen randomly
every time) according to which the algorithm produces the anticipated number of large waves.
Prior to placing the large waves on the film surface, the hydrodynamic criterion reported by
Karapantsios and Karabelas (1990), regarding the ratio of the front (max) to the back (min) slope
of each wave, is checked if it applies:

(dh/d),,
. 2 . <
1.5< (dhjd),.. < 3.0 for Re< 5000 (5a)
CLI
1.5 < ) (dhjdi),.. < 4.0 for Re > 5000 (5b)

In case the above condition is not met for some waves, the parameters ¢ and d for these particular
waves are re-selected, since the combination of ¢ and d alone dictates the slopes of the log-normal
waves. Following, all the large waves are deposited in a Gaussian manner over the film surface
produced at the previous phase of the reconstruction (Fig. 5c). If parts of the large waves overlap
with other elements of the film (such as capillary waves, ripples or other large waves) then the
parts with the higher height remain. It must be noted that the large waves deposition does not
have any significant effect on the frequency of large waves because it is very improbable a large
wave to cover completely another large wave. On the contrary, the ultimate frequencies of cap-
illary waves and ripples are drastically reduced. With the large waves in place, the reconstruction
of the liquid film surface is complete and has the form shown in Fig. 5d.

In order for the simulation to be considered successful and terminate, the statistical charac-
teristics of the reconstructed film thickness trace should match those obtained experimentally, for
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the same Re number. On this account, the algorithm incorporates iterative control checks and
adjustments until the desired result is achieved.

2.3. Checks and corrections

2.3.1. Standard deviation correction

As soon as the reconstruction of the whole film surface is completed for the first time, the
standard deviation, o, of the whole sample (8 s) is calculated. The obtained value is checked
whether it is contained in between a specific range of values, which varies with Reynolds number.
For Re < 5500 this range is

0.0001Re +0.1132 < ¢ < 0.0001Re + 0.2046 (6)

These limiting values are obtained from linear regression of the two independent sets of mea-
surements reported by Karapantsios et al. (1989), for the range 509 < Re < 5500. These authors
have shown that for Re > 5500, the standard deviation is practically independent from Re, taking
values in the range:

0.73 < 6 <0.79 (7)

According to Karapantsios and Karabelas (1990), the change observed for Re > 5500 reflects the
gradual weakening of the large waves amplification at these high flow rates. This was attributed to
the progressive increase of the substrate thickness with respect to Re, Eq. (2), which accommo-
dating now a larger portion of the flowing liquid acts as a dampener inhibiting the growth of roll
waves.

As one might have expected, large waves appear to have a major impact on the value of the
standard deviation of the whole film, since the latter expresses the dispersion of data around their
mean value. The correction of the standard deviation of the simulated film is based on this
observation. In particular, if the standard deviation falls outside the above ranges then the
parameter b of a deposited large wave (picked in random), by, receives a new value, by, as
follows. If ¢ is larger than the higher limits of Eq. (6) or (7) then bys, is replaced by byg and then
buew 18 selected from the narrower range [bsy,, bog]. On the other hand, if ¢ is smaller than the lower
limits of Eq. (6) or (7) then bs, is replaced by bgg and then by, is selected from the range
[boia, bose,]. The just modified wave need not be checked for the hydrodynamic conditions of Eq.
(5), since the parameter b has no effect on them.

The correction scheme described above, is repeated as many times as required (each time with a
different randomly chosen wave), until the ¢ value falls inside the predefined range. This iterative
procedure is rarely repeated for more than 6-10 waves of the total film (8 s). The simulated film
thickness trace after the standard deviation correction is shown in Fig. 6. In the displayed time
span of 1 s, only the (double) large wave on the left has been modified.

2.3.2. Mean value correction

It is imperative the mean value of the simulated film to also fall inside a specific range of values.
The limits of this range are defined through a linear (for simplicity) regression of the two inde-
pendent data sets of Karapantsios et al. (1989). Hence, it follows:



382 L.G. Touglidis et al. | International Journal of Multiphase Flow 30 (2004) 369-393

' AU\JU

-t (sec)

Fig. 6. Simulated film thickness trace for Re = 2325 after the standard deviation correction.

0.00009Re + 0.3949 < hyean < 0.0001Re + 0.4247 (8)

Eq. (8) is valid for the whole range of Re numbers tested, i.e. 509-7842. Instead of requiring /Aycan
of the reconstructed film to satisfy Eq. (8), a different procedure is followed. From the range
denoted by Eq. (8), a target mean value, 4, is chosen in a Gaussian manner, against which the
mean value of the simulation data is contrasted. This procedure is preferred because the algorithm
spontaneously tends to produce mean values nearer to the lower limit of Eq. (8), instead of values
uniformly distributed over the entire range.

In case where the mean value of the reconstructed film, /yean, deviates from 4, a correction is
made. The remedial action applies only to the substrate and to the ripples. The adjustment of
solely these two film elements proved adequate in effectively approaching 4, without spoiling the
preceding standard deviation correction applied to large waves, as confirmed by the successful
simulation outcome. The computational convenience in using completely independent correction
actions for the standard deviation and for the mean value is evident although on physical grounds
a weighted contribution of all film elements to all statistical quantities would be more appropriate.

The correction procedure starts by comparing the simulation mean value, /e, to the target
mean value, 4. If the two values differ from each other by more than 1%, the first action is to
check whether shifting the substrate height—by adding or subtracting a small constant thickness
to the entire simulated trace—brings /e, close enough to 4. The reconstructed film is allowed to
shift by no more than +0.01 mm. This is the maximum acceptable fluctuation of the substrate
height, as determined from the data of Karapantsios et al. (1989). Next, the total minimum of the
modified film trace is calculated which is actually the new height of the substrate, a’. The value of
a’ must satisfy the double inequality

Bonin — 0.01 < &' < hiiy + 0.01 )

If the above substrate adjustment is not enough to correct the mean value of the simulated film, a
correction of ripples is advanced. In order to achieve this, a whole new calculation starts from the
beginning of Section 2.2, because adjusting one or more of the already created ripples is neither
convenient nor effective. This is due to the extensive overlapping among ripples as a result of
which it is not anymore easy to identify and implement changes to any of them. So, from a
computational point of view it is better to simply adjust the range of the necessary parameters for
the ripples and start all over again the reconstruction of the film. The information regarding the
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previously selected large waves is also not retained in this new round of calculations. This is
because it is often the case that with the new ripples, the standard deviation correction must be
also repeated and once this is started the gain from keeping the old large waves virtually vanishes.

In this new set of calculations, all the parameters are selected again in a random fashion uti-
lizing the aforementioned limiting ranges and correlations but the target mean value / is kept the
same as before. The important differentiation in these new calculations is that the parameter b of
the ripples does not receive random values from the range [b™ b™ ], but instead from the range
[Bmin, b, ], Where b . is given by the following relation:

max

b/ = bmax + a’ — hmin (10)

max

and by, and by, are, respectively, the lower and higher b-values attained by the ripples at the end
of the previous round of calculations. It must be noted that b, never reaches values above Amean
or h. Apart from the mean value correction, the computational gain from the above manipulation
of the ripples’ b-values, regarding the time needed to achieve convergence, is substantial.

The reconstruction process, including the corrections for the standard deviation and the mean
value, is iterated until the produced results fulfil the conditions set for these two statistical
parameters. Fig. 7 shows the new film thickness trace produced at the end of the mean value
correction. Comparing Figs. 6 and 7 it is evident that the two displayed traces are quite different in
appearance due to the fact that the mean value correction procedure leads every time to a
completely new film surface with large waves, ripples and capillary waves different than the
previous ones. Yet, their frequency of occurrence plus all other statistical quantities are within the
desired range (calculated for the entire sample, 8§ s).

2.3.3. Cumulative probability density function correction

As observed by previous investigators (Chu and Dukler, 1974, 1975; Takahama and Kato,
1980; Karapantsios et al., 1989) the probability density distribution (PDD) of the measured film
thickness signal is asymmetric with a long tail to the right. In such cases the mean value and
standard deviation of the sample are not adequate descriptors of the distribution but statistical
moments of higher order are required, e.g. the coefficients of skewness and kurtosis, to represent
the shape of the PDD in terms of its deviation from the normal distribution. For this reason, the
last check of the algorithm deals with adjusting the PDD of the reconstructed time series. This is

0 | l | |
0 0.2 0.4 0.6 0.8 1

t (sec)

Fig. 7. Simulated film thickness trace for Re = 2325 after the mean value correction.
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necessary because it is possible for a reconstructed sample to have the same mean value and
standard deviation with an experimental sample but a quite different PDD. Karapantsios et al.
(1989) reported a satisfactory fit of the cumulative probability density distributions (CPDD) of
their film thickness records—for the range of Re numbers tested—by the Weibull distribution.

The Weibull probability density function is a special case of a Pearson type III or generalized
Gamma distribution. If film thickness is represented in the form 4 — Ay, then the distribution
according to the Weibull probability density function becomes (Derman et al., 1973):

-4 (1) (- (112

where k is the shape parameter and y the scale parameter of the distribution. If Zpean, Amin and o of
the sample are known then the following equations can be used to find & and y (I" is the gamma
function):

a Por(+2/k)
<hmmn-hmm> (r(1+1/k)) : (12a)
hmean - hmin
TTT k) (12b)

Evidently, Egs. (12a) and (12b) are cumbersome from a computational standpoint and for this
reason, other convenient algebraic expressions are employed in their place in the present algo-
rithm. An acceptable approximation (~ £0.1%) derived for the values of & when the ratio
0/ (hmean — hmin) varies between 0.7 and 1.2 (as is the case with the data of Karapantsios et al.,
1989) is

. —1.031
k= <hmean - hmin) (lsa)

In the same range of ¢/(Amean — Amin) Values, y can be approximated to within 1% by
y = 2- (hmean - hmin)
VT

For a wider 6/(Amean — hmin) interval or for accuracy better than 0.01%, y can be represented by

(13b)

k2.6674

10,184 + 0.816 - k273553

The correction procedure starts by calculating the parameters k& and y from Eqgs. (13a) and (13c).
Then, the entire simulated % series (as obtained after the mean value correction), is sorted in
ascending order. Subsequently, the values of the CPDD are calculated for every film thickness
position between Ay, and Ay, The resulting f(/) values are used to solve the inverse Weibull
function with % as the unknown.

The latter values (henceforth referred to as the Weibull predictions, Aw) are compared to the
corresponding / values of the simulated series (Fig. 8a). In order to judge whether a correction is
needed, the average of the percentage deviations between each element of the Weibull curve and
the simulation curve is calculated. If this number is less or equal to the number predicted by

Y= (hmean - hmin)

(13c¢)
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Fig. 8. Comparison of the theoretical Weibull CPDD vs. the corresponding curve from the simulation data (a) without
any correction applied to the CPDD and (b) after the final correction of the CPDD. Results are for Re = 2325.

N = 4.4122 % exp(0.0003Re) (14)

then the program terminates. Eq. (14) has been determined empirically after extensive compari-
sons of the experimental data of Karapantsios et al. (1989) with best-fit Weibull distributions and
represents the overall closest possible that the theoretical distribution approached the measure-
ments, for all the employed Re numbers. In developing Eq. (14), points with cumulative proba-
bility values less than 0.1 are neglected since they correspond to very small heights not playing an
important role to film morphology but for which the percentage deviations between curves can
reach high values.

Initially, the shape of the two curves in Fig. 8a is quite different and the limitation posed by Eq.
(14) is not met. Then, the points of interception of the two curves are determined. There are
always two such points for all the examined Reynolds numbers. The first point, f (/Aimm), receives
values from 0.4 (40% of the population) for Re =812 to 0.6 (60% of the population) for
Re = 4745, whereas the second point, f (ftmax), remains approximately constant around 0.85 (85%
of the population), regardless the Re.

As can be seen, above the higher interception point, f (ftmax), there is a quite satisfactory
convergence between the two curves. This part of the curves corresponds to film heights repre-
senting the upper half of the large waves. For 0.1 < f(h) < 0.4 the two curves are again quite close
to each other, this section representing chiefly the ripples. It must be recalled here that the height
of the produced ripples never exceeds /e, (Which has a nearly constant probability value
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f (mean) = 0.65-0.7). However, the simulated section between i and Ao, deviates considerably
from the theoretical curve and violates the condition of Eq. (14). After examination of many
simulated curves, it is found that there exist no large wave or ripple with its peak in between the
two interception points. Thus, this section of the curve represents solely the lower part of large
waves. This is due to the employed wave-selection criteria which being different for the large waves
and the ripples, do not yield wave peaks with intermediate b-values in the range [b], ., bsy]. It is
noteworthy though, that despite this irregularity both the mean value and the standard deviation
of the reconstructed sample are within the desired ranges.

The deviation of the two curves in Fig. 8a is corrected via the random deposition of additional
waves of intermediate size at the liquid film surface which, for simplicity, they are also assumed to
have a log-normal shape. The number of the waves that are deposited on the film, every time the
CPDD correction step is energized, is obtained empirically from the formula:

>3 *E (15)

where T and Atz are the total sample time and discretization interval (8 and 0.002 s, respectively),
23 is the number of data points of the average large wave of this study (see Section 2.1.4) and 1/3 is
an empirical factor to improve the convergence characteristics of the algorithm. Eq. (15) in fact
divides the number of data points between the two interception points by the average large wave
time-length to determine how many of such average waves fit in this section and then reduces this
value by a factor of three. If instead of m waves, just a single wave is added every time to the
simulated trace then the convergence is excessively slow. On the other hand, if m in Eq. (15) is not
divided by three then there are cases where the simulated curve already after the first addition of
the intermediate waves deviates to the other side of the Weibull curve (overcorrection). For
Re = 2325, it iS f (hmin) = 0.51 and f(hmay) = 0.87 from which one obtains m = {1/3 x (f (hmax) —
S (hmin))/23} % 8/0.002 = 21 which is the number of the intermediate waves deposited at the first
corrective action of the CPPD. For any subsequent correction of the CPPD this number is re-
duced because the updated f(Ay,) and f(hn.y) values are much closer to each other. Usually, the
required total number of deposited waves to satisfy the CPPD criterion does not exceed 30-35 (for
8 s total simulation period), regardless of Re. It must be stressed, however, that the real population
of these intermediate waves on the film surface is a bit less because of overlapping by the already
existing large waves.

After the number of the intermediate waves is determined, the log-normal parameters b, ¢ and d
of each wave are assigned their values. Regarding the parameters ¢ and d, the same rules apply as
with the ripples and large waves. On the other hand, the parameter b is selected randomly from
the range [b™ b™ ], where

bil::;x = ;’min —a (16)
b = N (17)

Examinations for all the employed Re numbers showed that

b/ < bint < bint < bS%

max min max ( 1 8)
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which means that indeed the new intermediate waves have peak values always in between the
already reconstructed ripples and large waves. Fig. 8b contrasts the cumulative probability density
curve after its final correction against the theoretical Weibull curve.

When the criterion of Eq. (14) is satisfied, the code stores the information about the total
number of the deposited intermediate waves and the limits between which their parameter b re-
ceives its values. Following, the new reconstructed film surface undergoes a recheck for all of the
aforementioned statistical quantities. If a new correction of the mean value is needed (4 remains
always the same) the procedure is as described above and after this is finished, intermediate waves
are added to the film. These intermediate waves are not entirely new in the sense that they
maintain their total number and b-values from the earlier round of the CPPD correction but their
position on the surface of the film is reselected in a random manner. The execution sequence of the
code routine is presented schematically in Fig. 9.

Load values for:
1. Reynolds number
2. Duration of simulation

|

| Substrate reconstruction

— l - Determination  of
Addition of ripples & < new range for the
capillary waves peak amplitude of
ripples & capillary
waves

Successive addition of
v all prev(ious sets of
intermediate waves.
CPDD#* has been YES Each set of waves
already corrected? ”| maintains its amplitude
range and population.

NO

A 4

Addition of large <
waves

<
<

NO ; :
Addition of a set of Ao I§ tt}}e star}g‘a.lrdth ]Amplltude a‘df(uidtmtent (:if a
intermediate waves > eviation within the »| large wave picked at random
correct range?

YES

NO

Is the mean value
within the correct
range?

»|  Erasure of old ripples
and capillary waves

YES

Determination of the peak NO
amplitude and population
of intermediate waves

Is the CPDD within the
correct range?

YES

v * CPDD: Cumulative probability density distribution

End of simulation

Fig. 9. Block diagram of code routine.
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3. Results and discussion

The lowest and the highest Reynolds numbers for which the above algorithm proved effective is
812 and 4745, respectively. Outside this range the algorithm is not possible to converge. This is,
however, an artifact resulting from the concept to correct the mean value of the simulated signal
by exclusively adjusting the ripples (and the substrate) whereas the standard deviation of the
signal by adjusting only the roll waves. Thus, for the examined Re = 509, the simulated roll waves
are larger than in the real film and this is so because in this case (wavy laminar film) the size of the
ripples is too small to can effectively control the mean value of the film; so the large waves
influence decisively both the standard deviation and the mean value. On the other hand, for
Re = 5517 and particularly for Re = 6682 and 7842, the distinction between ripples and roll waves
is not so clear since now the ripples grow to considerable heights. So, the mean value correction
has also a serious effect on standard deviation and vice versa. This is in line with the physical
picture of the film presented by Karapantsios et al. (1989) and Karapantsios and Karabelas
(1990), according to which for Re > 5000 the amplification of roll waves reduces drastically and
instead the substrate starts to grow. Accordingly, Grossman (1984) considered the regime
1000 < Re < 4000 not to be yet fully turbulent but a transitional inertial wavy-turbulent flow
regime.

Fig. 10 shows a comparison between the liquid film height traces obtained experimentally vs.
those produced by the simulation process for the successful range of Reynolds numbers. The plots
are for Re = 812, 2325 and 4745. The one-point film thickness time records of Karapantsios et al.
(1989) does not permit evaluation of the average roll wave velocity at each Re. Approximate
values can be obtained by interpolation among the elements of a comparable data set reported by
Karapantsios and Karabelas (1995a), obtained at the same longitudinal distance of the test pipe
and within the same range of Reynolds numbers. These velocities are 1.23, 1.4 and 1.8 m/s, for
Re = 812, 2325 and 4745, respectively. The simulation results are quite satisfactory, keeping in
mind the stochastic nature of the film surface. Hence, the criteria employed for the reconstruction
of the free falling film surface morphology can be considered as pretty effective.

An effort is made to determine the minimum duration of the simulation, for which reliable
results can be obtained. This is the time required for the mean and the standard deviation values
of the sample to stabilize. Fig. 11 shows a representative graph (for Re = 2325) of these two
statistical quantities plotted against time. It can be safely argued that for a simulation duration of
approximately 4 s both /..., and ¢ attain almost constant values. What is perhaps more signif-
icant is that the respective experimental values require about the same time to level off. The
discrepancy between the final experimental and simulated values is within the ranges defined by
Egs. (6) and (8).

Another interesting result refers to the spectra density functions of film height. According to
Karapantsios et al. (1989), the modal frequency of the large waves is 5-8 Hz, while a second less
pronounced peak appears at frequencies of 10-20 Hz corresponding to the smaller waves in the
substrate. The above observations hold for the entire range of Reynolds numbers tested. Similar
results are obtained from the simulation data, as displayed in Fig. 12. The absolute maximum of
the spectra graphs corresponds to the characteristic frequency of large waves whereas the sec-
ondary peaks between 10 and 20 Hz are attributed mainly to the reconstructed intermediate
waves.
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Fig. 10. Liquid film thickness traces for Re = 812, 2325 and 4745: (a), (c), (¢) experiment and (b), (d), (f) simulation (for

clarity, only 1 s is shown).

An important feature of this work is that the log-normal parameters ¢ and d receive their values
from the same range, for all wave categories. In fact, the only difference between the various types
of waves refers to the parameter b, which is related to the wave height. Therefore, it can be as-
sumed that all wave types are geometrically alike. Capillary waves can be excluded from this
argument because of the extensive overlapping that occurs during their reconstruction so that they
end up with a quite different, than the log-normal, shape. But even in the experimental signals,
geometrical asymmetry is improbable for such small curvature waves due perhaps to the strong

restoring influence of interfacial tension forces.
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Finally, it is worth mentioning some characteristics of the intermediate type of waves that are
produced during corrections of the CPDD. These waves have a size in between the sizes of large
waves and ripples. If one considers the highly dynamic nature of a falling film, that does not
permit wave structures to maintain their integrity for long downstream distances—the cross-
correlation coefficient computed for simultaneous film thickness records sampled at stations apart
by more than 40 cm is very low, e.g. Karapantsios and Karabelas, 1995a—then these intermediate
waves might be viewed either as ripples that grow bigger or large waves that get smaller. In this
respect, the number of the intermediate waves over a certain time period may reflect the rate of
creation and destruction of large waves. Taking into account that the characteristic frequency of
the large waves remains almost constant in every downstream longitudinal position (Takahama
and Kato, 1980; Karapantsios and Karabelas, 1995a), it can be assumed that, on the average, the
rate of large waves destruction is counterbalanced by the rate of their creation. Such an obser-
vation has a great significance because the rate of large waves renewal is very important in
understanding the mechanisms of heat and mass transport across a falling film in terms of the
wave-induced turbulence and the ensuing mixing of the liquid layers near the free surface.

4. Conclusions

In the present study a simulation algorithm is presented for the surface morphology recon-
struction of free falling films at relatively high Re numbers, i.e. ~ 800 < Re < ~ 5000. Several
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Fig. 12. Power spectra for Re = 2325: (a) experiment and (b) simulation.

types of waves have been considered to contribute differently in the development of the free
surface. These are the roll waves, the ripples and the capillary waves. The geometrical profile of all
these waves is assumed to be satisfactory described by the log-normal function. An important
feature of the present analysis is that it is possible to tune the standard deviation of the recon-
structed film by adjusting exclusively some of the roll waves (in random) while the mean value of
the film by adjusting some of the ripples (and/or the substrate), accordingly. The performance of
the simulation is encouraging, producing acceptable predictions. This demonstrates that the cri-
teria and hypotheses incorporated in the algorithm are capable of simulating the surface mor-
phology fairly accurately. However, the possibility must not be excluded that there may exist
other combinations of physical characteristics that can also lead to acceptable predictions.
Nonetheless, the solution presented here is a useful tool in modeling efforts. This work suggests
that simulation efforts like the present one may facilitate the exposure of concealed salient features
of the film flow, such as the rate of large waves renewal, which are essential to comprehend the
impact of waves on processes where heat and mass transfer hold a key role.
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